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A Characterizing Arctic plant traits with near-surface and unmanned aerial system

PN,

(UAS) remote sensing

Terrestrial Ecosystem Science and Technology (TEST) Group, Environmental and Climate Sciences Department, Brookhaven National Laboratory
Contact: sserbin@bnl.gov; https://www.bnl.gov/envsci/testgroup/
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Figure 3. Remote sensing can be
used to remotely measure plant
traits. Specifically leaf and imaging
spectroscopy data within the visible,
near-infrared (NIR), and shortwave
infrared (SWIR) provides the best
opportunity to measure a broad
range of key plant biochemical and
physiological traits across scales.
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Figure 2. Near-surface (e.g. tram) to UAS and
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Modeling the fluxes and pools of carbon, water and energy is an
essential part of understanding and quantifying the impacts of global
change on terrestrial ecosystems. Process models, such as terrestrial
biosphere and Earth System Models require detailed information on
vegetation states and properties to properly simulate these fluxes and
pools as well as to minimize model projection uncertainties.

A major focus of our
research is on the use of
remote sensing data (from
leaf to grid scale) to enable
the mapping of key plant
traits and canopy properties
related to ecosystem
structure and functioning.
These spatially and
temporally rich trait maps
are then used to iteratively
inform modeling activities
across the Arctic within a
ModEx framework (Fig 1).

Figure 1. Our ModEXx approach to study processes that have a global impact, focused on ecosystems
that are poorly understood, sensitive to global change, and inadequately represented models.

manned aerial platforms can fill a critical gap in the
scaling of plant properties and traits from the leaf to
the synoptic grid/satellite scale and enable rapid and
targeted data collection activities to correspond with
field campaigns
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Figure 4. The NGEE-Arctic automated tram platform (a) collects surface energy balance

measurements (e.g. albedo, net radiation), TIR and RGB photos, as well as spectral properties

at 137 stops along the 70 meter track. The UniSpec-DC dual upwelling/downwelling
spectrometer is being used to measure spatial (b) and seasonal variation of canopy

reflectance, spectral vegetation indices, (c) and visible through near-infrared (VNIR) albedo
\ (d). The tram is also located within the NGEE-Arctic eddy covariance tower (not pictured)
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Figure 6. Our UAS instrument suite
contains a mixture of both point and
iImaging hardware. We have developed
a software automation package (Figs. 7
& 8) to facilitate collection and are
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Figure 7. Schematic of our
automation and instrument
control which uses a
sophisticated open-source
flight control computer
together with state-of-the-

UAS Platform

Record onboard measurement time and location data

Figure 5. (a) Our Osprey heavy-lift (3-5kg payload capacity, depending on motor configuration)
octocopter UAS (FAA Civil Aviation Registry No. T0056572) is built from a CarbonCore carbon
fiber airframe together with a 3D Robotics PixelHawk flight control computer and a 3-axis
programmable brushless gimbal. (b) Close up of our mixed-footprint instrument suite (Fig. 6): a
high-resolution digital camera, dual spectrometers for downwelling and upwelling irradiance
measurements (to calculate surface reflectance), and a thermal infrared camera (see Fig. 7)
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Figure 8. Our custom-designed Modular Data Collection System (MoDaCS) links UAS mission
planning and flight control to the onboard instrument packages enabling automated data
acquisition linked to customizable flight plans and real-time monitoring. MoDaCS is written in
. | Python with a graphical user interface (GUI) built with the Qt framework to provide graphical
| monitoring and interactive plotting during and following data collection (e.g. Fig. 9)
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Figure 10. During the summer of 2017 we Figure 11. Flying the Osprey platform at the
deployed our platform (Fig. 5) at the NGEE-  Teller study site

Arctic Seward Peninsula sites
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Figure 12. Spectral variation across a tussock tundra (a) and shrub tundra (b) landscape at
the Council study site (Fig. 10) measured from our UAS platform. The corresponding patterns
in NDVI (c) and VNIR spectral albedo (d)
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Figure 13. (a) A digital ortho-mosaic
with an overlaid map of canopy
pigment concentration derived from
our UAS platform using measured
reflectance and a spectral inversion
approach (Shiklomanov et al. 20106).
Inset graphs show the patterns in
derived leaf mass area (LMA), leaf
area idex (LAIl), and Vcmax25 using
the approach of Croft et al. (2017). (b)
Spectral footprints showing the
vegetation comprising each
measurement location.
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Figure 9. An example high-resolution thermal image of shrub tussock tundra at the Teller study
site displayed in our MoDaCS software. The white box region-of-interest (ROI) and
corresponding temperature variation is shown below the image

* Finalize data processing workflows and provide remote sensing (tram/
UAS) data products to the NGEE portal and publish results

« 2018 re-deployment in Barrow/Nome to continue mapping of key areas
at each study site

* Link with NASA ABoVE to provide watershed-scale trait mapping
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